[RL] 1. 강화학습
강화학습
강화 학습(Reinforcement learning)은 기계 학습의 한 영역이다. 행동심리학에서 영감을 받았으며, 어떤 환경 안에서 정의된 에이전트가 현재의 상태를 인식하여, 선택 가능한 행동들 중 보상을 최대화하는 행동 혹은 행동 순서를 선택하는 방법이다. 이러한 문제는 매우 포괄적이기 때문에 게임 이론, 제어이론, 운용 과학, 정보 이론, 시뮬레이션 기반 최적화, 다중 에이전트 시스템, 떼 지능, 통계학, 유전 알고리즘 등의 분야에서도 연구된다. 운용 과학과 제어 이론에서 강화 학습이 연구되는 분야는 “근사 동적 계획법”이라고 불린다. 또한 최적화 제어 이론에서도 유사한 문제를 연구하지만, 대부분의 연구가 최적해의 존재와 특성에 초점을 맞춘다는 점에서 학습과 근사의 측면에서 접근하는 강화 학습과는 다르다. 경제학과 게임 이론 분야에서 강화 학습은 어떻게 제한된 합리성 하에서 평형이 일어날 수 있는지를 설명하는 데에 사용되기도 한다.